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The type checker

 Input: HsSyn GhcRn

 Output: HsSyn GhcTc
Elaboration

A very big 
data type





 Language.Haskell.Syntax.*  aka “HsSyn”
 GHC-independent definition of syntax tree

 Ultimately intended to be a separate package.

 Intended to be useful for other tools (eg Template Haskell,
haskell-src-exts).

 GHC.Hs.*
 GHC-specific instantiation of HsSyn.

 Uses Trees that Grow ideas a lot.

 Wiki page: https://gitlab.haskell.org/ghc/ghc/-/wikis/implementing-trees-that-grow.



 Key resource

 Tons of useful information

 Easily gets out of date

 Everyone can edit:
please, please do so.  

 Do not accept bogus or out 
of date info!  Ask, redraft, 
fix.



 XVar, XLitE, XOpApp live are 
the constructor extensions

 XXExpr is the 
data type extension

 Instances for XVar, XXExpr etc 
are in the GHC-specific tree: 
GHC.Hs.*

module Language.Haskell.Syntax.Expr where

data HsExpr p

= HsVar (XVar p) (LIdP p)

| HsLit (XLitE p)(HsLit p)

| OpApp (XOpApp p) (LHsExpr p) (LHsExpr p) (LHsExpr p)

...dozens of others...

| XExpr !(XXExpr p)

module Language.Haskell.Syntax.Extension where

type family XVar p

type family XLitE p

type family XLam p

type family XXExpr p

type family XRec p a

type family IdP p

type LIdP p = XRec p (IdP p)



 HsExpr (GhcPass p): 
output of pass p of GHC

 XOpApp (GhcPass p):
Extension field of HsOpApp is 
populated with different types, 
depending on which pass

module Language.Haskell.Syntax.Expr where

data HsExpr p

= HsVar (XVar p) (LIdP p)

| HsLit (XLitE p)(HsLit p)

| OpApp (XOpApp p) (LHsExpr p) (LHsExpr p) (LHsExpr p)

...dozens of others...

| XExpr !(XXExpr p)

module GHC.Hs.Extension where

data Pass = Parsed | Renamed | Typechecked

data GhcPass (c :: Pass) where

GhcPs :: GhcPass 'Parsed

GhcRn :: GhcPass 'Renamed

GhcTc :: GhcPass 'Typechecked

type GhcPs = GhcPass ‘Parsed

type GhcRn = GhcPass ‘Renamed

type GhcTc = GhcPass 'Typechecked

type instance XOpApp GhcPs = EpAnn [AddEpAnn]

type instance XOpApp GhcRn = Fixity

type instance XOpApp GhcTc = DataConCantHappen



 GenLocated (Anno e) e:
wraps e in decoration (Anno e)

 The ‘Anno e’ is a SrcSpan...

 ...maybe plus some extra stuff

 Most HsExprs are wrapped in 
LHsExpr, which gives a SrcSpan.

module Language.Haskell.Syntax.Expr where

data HsExpr p

= HsVar (XVar p) (LIdP p)

| HsLit (XLitE p)(HsLit p)

| OpApp (XOpApp p) (LHsExpr p) (LHsExpr p) (LHsExpr p)

...dozens of others...

| XExpr !(XXExpr p)

type LHsExpr p = XRec p (HsExpr p)

module GHC.Hs.Extension where

data Pass = Parsed | Renamed | Typechecked

data GhcPass (c :: Pass) where

GhcPs :: GhcPass 'Parsed

GhcRn :: GhcPass 'Renamed

GhcTc :: GhcPass 'Typechecked

type instance XRec (GhcPass p) a 

= GenLocated (Anno a) a

data GenLocated l e = L l e

type family Anno a



So HsVar contains

 A RdrName after parsing

 A Name after renaming

 An Id after type checking

module Language.Haskell.Syntax.Expr where

data HsExpr p

= HsVar (XVar p) (LIdP p)

| HsLit (XLitE p)(HsLit p)

| OpApp (XOpApp p) (LHsExpr p) (LHsExpr p) (LHsExpr p)

...dozens of others...

| XExpr !(XXExpr p)

module Language.Haskell.Syntax.Extension where

type LIdP p = XRec p (IdP p)

type family IdP p

module GHC.Hs.Extension where

type instance IdP (GhcPass p) = IdGhcP p

type family IdGhcP pass where

IdGhcP 'Parsed      = RdrName

IdGhcP 'Renamed     = Name

IdGhcP 'Typechecked = Id

module GHC.Types.Var where

type Id = Var

data Var = ...

= TyVar { ... }

| TcTyVar { ... }

| Id {

varName :: !Name,

realUnique :: !Int,

varType :: Type,

varMult :: Mult,

idScope :: IdScope,

id_details :: IdDetails

id_info :: IdInfo }



 XXExpr (GhcPass p):
says what extra 
constructors are needed 
in HsExpr after pass p.

module Language.Haskell.Syntax.Expr where

data HsExpr p

= HsVar (XVar p) (LIdP p)

| HsLit (XLitE p)(HsLit p)

| OpApp (XOpApp p) (LHsExpr p) (LHsExpr p) (LHsExpr p)

...dozens of others...

| XExpr !(XXExpr p)

module Language.Haskell.Syntax.Extension where

type LIdP p = XRec p (IdP p)

type family IdP p

module GHC.Hs.Expr where

type instance XXExpr GhcPs = DataConCantHappen

type instance XXExpr GhcRn = HsExpansion (HsExpr GhcRn) (HsExpr GhcRn)

type instance XXExpr GhcTc = XXExprGhcTc

-- After renaming

data HsExpansion orig expanded = HsExpanded orig expanded

-- After typechecking

data XXExprGhcTc = WrapExpr ... | ExpansionExpr ... | ...





 Typecheck the original Haskell, as written by the user

 Desugar afterwards

 That way, the error messages make sense.



 Typechecking the original took a hundred lines of tricky code

 If we desugar first....

 ...it’s all much easier

x :: T Int Char

y = x { name = “Simon”, info1 = True }

-- y :: T Bool Char 

data T a b = MkT { name  :: String

, info  :: a

, info2 :: b }

x :: T Int Char

y = case x of

MkT { info2 = i2 }

-> MkT { name = “Simon”, info1 = True, info2 = i2 } 



 For –XRebindableSyntax, the definition of “well-typed” is 
“expand and typecheck the expansion”.

 E.g. numeric literals with -XRebindableSyntax
 3    means      fromInteger 3
 where ‘fromInteger’ means whatever fromInteger is in scope, which 

might have a weird type like fromInteger :: Integer -> a -> Bool

 Most straightforward approach: desugar then typecheck.

 https://gitlab.haskell.org/ghc/ghc/-/wikis/Rebindable-syntax



 ‘orig’ retains the original, un-expanded, expression

 ‘expanded’ is the desugared version

 Typechecker pushes ‘orig’ on the context stack, for the “In the expression ...” 
location information

 SrcSpans on ‘expanded’ are “GeneratedSrcSpan”, and are not put on the 
context stack by the typechecker

 Somewhere inside ‘expanded’ we’ll get back to “original” expressions, with non-
Generated SrcSpans, and will resume putting SrcSpans on the context stack

data HsExpr p

= ...dozens of others...

| XExpr !(XXExpr p)

type instance XXExpr GhcRn

= HsExpansion (HsExpr GhcRn) (HsExpr GhcRn)

-- After renaming

data HsExpansion orig expanded = HsExpanded orig expanded



 In the Renamer
{- Note [Handling overloaded and rebindable constructs]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For overloaded constructs (overloaded literals, lists, strings), and

rebindable constructs (e.g. if-then-else), our general plan is this,

using overloaded labels #foo as an example:

* In the RENAMER: transform

HsOverLabel "foo"

==> XExpr (HsExpansion (HsOverLabel #foo)

(fromLabel `HsAppType` "foo"))

We write this more compactly in concrete-syntax form like this

#foo  ==>  fromLabel @"foo"

Recall that in (HsExpansion orig expanded), 'orig' is the original term

the user wrote, and 'expanded' is the expanded or desugared version

to be typechecked.

* In the TYPECHECKER: typecheck the expansion, in this case

fromLabel @"foo"

The typechecker (and desugarer) will never see HsOverLabel



 In the Typechecker

 Typecheck has a bit more information available

tcExpr expr@(RecordUpd { rupd_expr = record_expr

, rupd_flds = RegularRecUpdFields

{ xRecUpdFields = possible_parents

, recUpdFields = rbnds } })

res_ty

= assert (notNull rbnds) $

do  { -- Desugar the record update. See Note [Record Updates].

; (ds_expr, ds_res_ty, err_ctxt)

<- desugarRecordUpd record_expr possible_parents rbnds res_ty

-- Typecheck the desugared expression.

; expr' <- addErrCtxt err_ctxt $

tcExpr (mkExpandedExpr expr ds_expr) (Check ds_res_ty)

...





 TcM carries
 Type environment: what is in scope, with what type
 Ambient level
 Error context
 Template Haskell stage
 State to accumulate 

 emitted constraints
 error messages

module GHC.Tc.Gen.Expr where

tcMonoExpr :: LHsExpr GhcRn

-> ExpRhoType

-> TcM (LHsExpr GhcTc)

“Elaborated term”

Output of renamer

“Expected type” 
of the term

Typechecker monad



 TcM carries
 Type environment: what is in scope, with what type

 Ambient level

 State to accumulate emitted constraints

 Error context



sort    ::  a. Ord a => [a] -> [a]

reverse ::  a. [a] -> [a]

foo :: [Int] -> [Int]

foo = \xs. sort (reverse xs)

$fOrdInt :: Ord Int

foo :: [Int] -> [Int]

foo = \(xs:[Int]). sort @Int $fOrdInt

(reverse @Int xs)
Elaboration

• Decorate every binder with its type

• Add type applications

• Add dictionary applications

$fOrdInt comes from
instance Ord Int where 

…

Before typechecking: HsExpr GhcRn

After typechecking: HsExpr GhcTc



sort    ::  a. Ord a => [a] -> [a]

reverse ::  a. [a] -> [a]

foo ::  a. Ord a => [a] -> [a]

foo = \xs. sort (reverse xs)

foo ::  a. Ord a => [a] -> [a]

foo = /\a. \(d:Ord a). \(xs:a).

sort @a d (reverse @a xs)
Elaboration

• Decorate every binder with its type

• Add type applications
and abstractions

• Add dictionary applications
and abstractions



Elaboration

• Decorate every binder
with its type

• Add type applications
and abstractions

• Add dictionary applications
and abstractions,
and local bindings

sort   ::  a. Ord a => [a] -> [a]

concat ::  a. [[a]] -> [a]

foo ::  a. Ord a => [[a]] -> [a]

foo = \xs. concat (sort xs)

$fOrdList ::  a. Ord a -> Ord [a]

foo ::  a. Ord a => [a] -> [a]

foo = /\a. \(d:Ord a). \(xs:a).

let d2:Ord [a]

d2 = $fOrdList @a d

in concat @a (sort @[a] d2 xs)

$fOrdList comes from
instance Ord a => Ord [a] where …



 Type applications, type abstractions, dictionary bindings, are 
all stored in a TTG extension constructor

type instance XXExpr GhcTc = XXExprGhcTc

data XXExprGhcTc = WrapExpr HsWrapper (HsExpr GhcTc)

| ...

data HsWrapper = WpHole

| WpCompose HsWrapper HsWrapper

| WpFun HsWrapper HsWrapper (Scaled TcTypeFRR)

| WpCast TcCoercionR

| WpEvLam EvVar

| WpEvApp EvTerm

| WpTyLam TyVar

| WpTyApp KindOrType

| WpLet TcEvBinds

| WpMultCoercion Coercion

data HsExpr p

= ...dozens of constructors...

| XExpr !(XXExpr p)





Solve
constraints

Haskell 
source 

program

Large 
syntax, with 
many many 

constructors

Constraints

Small syntax, 
with few 

constructors

Constraint 
generation

Residual constraint

Elaborated 
program 

with “holes”

Report
errors

Elaborated 
source 

program

Substitution

Apply
substitution 

(aka “zonking)

The essence of ML type inference, Pottier & Remy,
In ATTAPL, Pierce, 2005.



 Constraint generation has a lot of cases (Haskell has a big 
syntax) but is rather easy.

 Constraint solving is tricky!  But it only has to deal with a 
very small constraint language.

 Generating an elaborated program is easy: constraint solving 
“fills the holes” of the elaborated program



 Constraint solver can work in whatever order it likes (incl
iteratively), unaffected by of the order in which you 
traverse the source program.  

 A much more common approach (e.g. Damas-Milner): solve 
typechecking problems in the order you encounter them

 Result: small (even syntactic) changes to the program can 
affect whether it is accepted 

TL;DR: generate-then-solve is much more robust



 All type error messages are generated from the final, 
residual unsolved constraint. 

 Hence type errors  incorporate results of all solved 
constraints.  Eg “Can’t match [Int] with Bool”, rather than 
“Can’t match [a] with Bool”

 Much more modular: error message generation is in one place 
(GHC.Tc.Errors) instead of scattered all over the type 
checker.

 Constraints carry “provenance” information to say whence 
they came



 Highly modular

 constraint generation (7 modules, 8,000 loc)

 constraint solving (5 modules, 7,000 loc)

 error message generation (1 module, 10,000 loc)

 Efficient: constraint generator does a bit of “on the fly” 
unification to solve simple cases, but generates a constraint 
whenever anything looks tricky

 Provides a great “sanity check” for proposed type system 
extensions: is it easy to generate constraints, or do we need a 
new form of constraint?



Haskell 
source 

program

Large 
syntax, with 
many many 

constructors

Constraints

Small syntax, 
with few 

constructors

Constraint 
generation

Elaborated 
program 

with “holes”

Report
errors

Elaborated 
source 

program

Apply
substitution

GHC.Tc.Gen

GHC.Tc.SolverGHC.Tc.Types.Constraint

GHC.Tc.Errors

GHC.Tc.Utils.Zonk

Solve
constraints

Residual constraint

Substitution



module GHC.Tc.Gen.Expr where

tcMonoExpr :: LHsExpr GhcRn

-> ExpRhoType

-> TcM (LHsExpr GhcTc)

Elaborated term

Generated 
constraints 

accumulated by 
TcM (writer 

monad)

Output of renamer

“Expected type” 
of the term



Code Comments

Constraint generation GHC.Tc.Gen 11,363 8,300

Constraint solver GHC.Tc.Solver 5,944 7,152

Error checking and messages GHC.Tc.Errors 9,242 4,987

“Deriving” (Ryan Scott) GHC.Tc.Deriv 4,260 4,401

Type and class decls GHC.Tc.TyCl 4,889 4,639

Instance decls GHC.Tc.Instance 1,321 1,451

Utilities GHC.Tc.Utils 6,497 5,447

Zonk GHC.Tc.Zonk 1,848 741

Types GHC.Tc.Types 3,111 2,891

TOTAL 49,603 41,439





Faithfully represents Haskell types

forall a. Eq a => a -> a

ForAllTy a (FunTy FTF_C_T
(TyConApp Eq [TyVarTy a])
(FunTy FTF_T_T (TyVarTy a)

(TyVarTy a)

module GHC.Core.TyCo.Rep where

type Kind = Type

data Type

= TyVarTy Var

| AppTy Type Type

| TyConApp TyCon [Type]

| ForAllTy ForAllTyBndr Type

| FunTy FunTyFlag Mult Type Type

| LitTy TyLit

| CastTy Type Coercion

| CoercionTy Coercion

data TyLit

= NumTyLit Integer

| StrTyLit FastString

| CharTyLit Char

data FunTyFlag

= FTF_T_T   -- (->)  Type -> Type -> Type

| FTF_T_C   -- (-=>) Type -> Constraint -> Constraint

| FTF_C_T   -- (=>)  Constraint -> Type -> Type

| FTF_C_C   -- (==>) Constraint -> Constraint -> Constraint

module GHC.Types.Var where

type TyVar = Var

data Var = ...

= TyVar { varName :: Name

, realUnique :: !Int

, varType :: Kind }

| TcTyVar { ... }

| Id {...}



 Notes are a very simple device

 Heavily used in GHC (over 2,500 Notes)

 An absolute life saver

 Letters to our future selves

 See Wiki coding style guidance

Cites Note without 
disturbing the code

Note gives the details.
May be cited in many 

places



 Co



 A unification variable stands for a type; it’s a type that we 
don’t yet know

 GHC sometimes calls it a “meta type variable”

 By the time type inference is finished, we should know what 
every meta-tyvar stands for.

 The “global substitution” (aka state!) maps each meta-tyvar
to the type it stands for.

 A meta-tyvar stands only for a monotype; a type with no 
foralls in it.



module GHC.Types.Var where

data Var

= TyVar { varName :: !Name

, realUnique :: {-# UNPACK #-} !Int

, varType :: Kind }

| TcTyVar { varName :: !Name,

, realUnique :: {-# UNPACK #-} !Int,

, varType :: Kind,

, tc_tv_details :: TcTyVarDetails }

| Id { ... }

 No static distinction between 
TcType and Type,

 Sad, but has never proved to 
be a problem in practice

module GHC.Tc.Utils.TcType where

type TcType = Type -- May have TcTyVars

data TcTyVarDetails

= SkolemTv SkolemInfo TcLevel Bool

| MetaTv { mtv_info :: MetaInfo

, mtv_ref :: IORef MetaDetails

, mtv_tclvl :: TcLevel }

| RuntimeUnk

data MetaDetails = Flexi | Indirect TcType

data MetaInfo

= TauTv

| TyVarTv

| RuntimeUnkTv

| CycleBreakerTv

| ConcreteTv ConcreteTvOrigin



 Zonking replaces a filled-in meta-tyvar with the type in the 
ref-cell.

 Saves requiring every function that examines types to be in 
the TcM monad; instead, zonk first.

 Tricky point: knowing when to zonk.   
 Zonking too much is inefficient

 Zonking too little is wrong.

module GHC.Tc.Zonk.TcType where

zonkTcType :: TcType -> TcM TcType



 Used during type inference

 Result can have TcTyVars

 Types and constraints only (hence small)

module GHC.Tc.Zonk.TcType where

zonkTcType :: TcType -> TcM TcType

module GHC.Tc.Zonk.Type where

zonkTcTypeToType :: TcType -> TcM Type

 Used after type inference

 Result has no TcTyVars

 Types and terms (hence big)

 Fills in “holes” in the elaborated term



module GHC.Tc.Gen.Expr where

tcMonoExpr :: LHsExpr GhcRn -- Expression to type check

-> ExpType -- Expected type

-> TcM (LHsExpr GhcTc)

module GHC.Tc.Utils.TcType where

data ExpType = Check TcType

| Infer !InferResult

data InferResult

= IR { ir_uniq :: Unique

, ir_lvl :: TcLevel

, ir_frr :: Maybe FixedRuntimeRepContext

, ir_ref :: IORef (Maybe TcType) }

-- Checking

f :: Int -> Int

f x = x+1

-- Inference

g x = x+1

Very like a unification variable
BUT can be filled in with a 

polytype





Haskell 
source 

program

Large syntax, 
with many 

many 
constructors

Constraints

Small syntax, 
with few 

constructors

Constraint 
generation

Residual 
constraint

S
olve

Report errors

What 
exactly
is this?

How does 
solving work?



W ::= 𝝐 Empty constraint
| W1 , W2 Conjunction
| C t1.. tn Class constraint 
| t1 ~ t2 Equality constraint
| a1..an. W1W2 Implication



W ::= 𝝐 Empty constraint
| W1 , W2 Conjunction
| d : C t1.. tn Class constraint 
| g : t1 ~ t2 Equality constraint
| a1..an. W1W2 Implication constraint

Evidence



1. Take the constraints

2. Do one rewrite

3. Repeat from 1

 Each step takes a set of 
constraints and returns a 
logically-equivalent set 
of constraints.

 When you can’t do any 
more, that’s the 
“residual constraint”

[] ~ [],  [] ~ [Int],  d:Ord 

 ~ ,  [] ~ [Int],  d:Ord 

Decompose 𝛽 ~ [𝛿]

Substitute 𝛽 ≔ 𝛿

[] ~ [Int],  d:Ord 𝛿

 ~ Int,  d:Ord 𝛿

Decompose 𝛿 ~ [𝐼𝑛𝑡]

d:Ord 𝐼𝑛𝑡

Substitute 𝛿 ≔ 𝐼𝑛𝑡

𝜖

Solve 𝑑:𝑂𝑟𝑑 𝐼𝑛𝑡 from instance declaration

𝛽 ≔ 𝛿

𝛽 ≔ δ
𝛿 ≔ 𝐼𝑛𝑡



 Constraint solving takes place by successive rewrites
of the constraint

 Each rewrite generates a binding, for
 a type variable (fixing a unification variable)
 a dictionary (class constraints)
 a coercion (equality constraint)

as we go

 Bindings record the proof steps

 Bindings get injected back into the elaborated term





$ ghc –c –ddump-tc-trace Foo.hs >& foo.tc-trace

$ wc Foo.tc-trace

1748  6058 48736 Foo.tc-trace

module Foo where

f :: Eq a => [a] -> [a] -> Bool

f xs ys = not (xs == ys)



 Line 1115
Starting to typecheck f

 Line 1325
Finished f
(NB: matching braces)

 Unification

Bindings for { [f]

Generalisation plan

CheckGen f :: forall a. Eq a => [a] -> [a] -> 

Bool

tcPolyCheck

f

Foo.hs:3:1-31

writeMetaTyVar a_aKv[tau:1] := [a_aKr[sk:1]]

} End of bindings for

[f]

NonRecursive

f forall a. Eq a => [a] -> [a] -> Bool

tcExtendBinderStack [f[<TopLevel>]]



 Line 1359: solve constraints (again matching braces)

Tc6

Tc7

Tc7a

simplifyTop {

wanted =  WC {wc_impl =

Implic {

TcLevel = 1

Skolems = a_aKr[sk:1]

Given-eqs = MaybeGivenEqs

Status = Unsolved

Given = $dEq_aKs :: Eq a_aKr[sk:1]

Wanted =

WC {wc_simple = [W] $dEq_aKw {0}:: Eq a_aKv[tau:1] (CNonCanonical)}

Binds = EvBindsVar<aKA>

the type signature for:

f :: forall a. Eq a => [a] -> [a] -> Bool }}



 Always build your development compiler with –DDEBUG

 That enables a bunch of assertions, which sometimes catch 
bugs early





data T where

MkT :: a. Show a => a -> T

ts :: [T]

ts = [MkT 3, MkT True]

ts = [ MkT @Int $fShowInt 3

, MkT @Bool $fShowBool True

]

MkT :: a. Show a => a -> T

show :: a. Show a => a -> String



ts :: [T]

ts = [MkT 3, MkT True]

ts = [ MkT @Int $fShowInt 3

, MkT @Bool $fShowBool True

]

f :: T -> String

f = \t. case t of

MkT x -> show x

f = \(t:T). case t of

MkT a (gd:Show a) (x:a)

-> show @a gd x

MkT :: a. Show a => a -> T

show :: a. Show a => a -> String

“gd” is short for “Given 
dictionary”



f = \t. case t of { MkT x -> show x }

• f : 𝛼
• t : 𝛽
• x : a
• Instantiate show 

with 𝛿

𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case
d : Show 𝛿 From call of show
𝛿 ~ 𝑎 From (show x)
𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 From result of foo

Generate 
constraints

MkT :: a. Show a => a -> T

show :: a. Show a => a -> String



f = \t. case t of { MkT x -> show x }

𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case
d : Show 𝛿 From call of show
𝛿 ~ 𝑎 From (show x)
𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 From result of foo

Generate 
constraints

MkT :: a. Show a => a -> T

show :: a. Show a => a -> String

• But what is this ‘a’?

• And how can we solve 
Show 𝛿?



f = \t. case t of { MkT x -> show x }

𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case

∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘 𝒂) ⇒
{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝛿 From call of show
, 𝛿 ~ 𝑎 From (show x)
, 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 } From result of foo

Generate 
constraints

MkT :: a. Show a => a -> T

show :: a. Show a => a -> String

• But what is this ‘a’?
Answer: Bound by ∀𝑎

• And how can we solve 
d : Show 𝛿?
Answer: from gd.



W ::= 𝝐 Empty constraint
| W1 , W2 Conjunction
| d : C t1.. tn Class constraint 
| g : t1 ~ t2 Equality constraint
| a1..an. W1W2 Implication

Implication 
constraint Given

Wanted



data Ct = CDictCan DictCt

| CEqCan EqCt

| CIrredCan IrredCt

| CQuantCan QCInst

| CNonCanonical CtEvidence

data Implication = Implic {

ic_tclvl :: TcLevel,

ic_info :: SkolemInfoAnon,

ic_skols :: [TcTyVar],

ic_given :: [EvVar],

ic_wanted :: WantedConstraints,

ic_binds :: EvBindsVar,

...some more stuff... }

data WantedConstraints

= WC { wc_simple :: Bag Ct

, wc_impl :: Bag Implication

, wc_errors :: Bag DelayedError }

data DictCt   -- e.g.  Num ty

= DictCt { di_ev  :: CtEvidence

, di_cls :: Class

, di_tys :: [Xi]

, di_pend_sc :: ExpansionFuel }

data EqCt = EqCt { eq_ev     :: CtEvidence

, eq_lhs    :: CanEqLHS

, eq_rhs    :: Type

, eq_eq_rel :: EqRel }

data CanEqLHS = TyVarLHS TcTyVar

| TyFamLHS TyCon [Type]



𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case

∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘 𝒂) ⇒
{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝛿 From call of show
, 𝛿 ~ 𝑎 From (show x)
, 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 } From result of foo

∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘 𝒂) ⇒
{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝛿, 𝛿 ~ 𝑎, 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 }

∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘 𝒂) ⇒
{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝑎, 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 }

Substitute 𝛿 ≔ 𝑎

∀𝒂. 𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘 𝒂 ⇒ 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔

Solve (d:Show a), substitute d:=gd 𝛿 ≔ 𝑎

Substitute 𝛾 ≔ 𝑆𝑡𝑟𝑖𝑛𝑔

𝜖

f = \(t:T). case t of

MkT a (gd:Show a) (x:a)

-> show @a gd x

Elaborated program with holes

f = \(t:). case t of

MkT a (gd:Show a) (x:a)

-> show @ d x

Elaborated program after filling holes

Solving



f = \t. case t of

MkT x -> show x

Generate 
constraints

f = \(t:T). case t of

MkT a (gd:Show a) (x:a)

-> show @a gd x

• 𝛼 is a unification variable, standing for an as-yet-unknown 
type. 

• Constraint solving produces a substitution for the 
unification variables

• When typechecking is done,
all unification variables are gone (substituted away)

• 𝑎 is a skolem constant, the type variable 𝑎 bound by the 
MkT pattern match in the elaborated program.

• Each pattern match on MkT binds a fresh, distinct ‘a’.

• Every skolem in the constraints should be bound by a ∀

𝛼 ~ 𝛽 → 𝛾
𝛽 ~ 𝑇

∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘 𝒂) ⇒
{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝛿
, 𝛿 ~ 𝑎
, 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 }



module GHC.Types.Var where

data Var

= TyVar { varName :: !Name

, realUnique :: {-# UNPACK #-} !Int

, varType :: Kind }

| TcTyVar { varName :: !Name,

, realUnique :: {-# UNPACK #-} !Int,

, varType :: Kind,

, tc_tv_details :: TcTyVarDetails }

| Id { ... }

 SkolemTv: bound by type signature 
or existential pattern match

 MetaTv: a meta-tyvar (aka 
unification variable)

module GHC.Tc.Utils.TcType where

type TcType = Type -- May have TcTyVars

data TcTyVarDetails

= SkolemTv SkolemInfo TcLevel Bool

| MetaTv { mtv_info :: MetaInfo

, mtv_ref :: IORef MetaDetails

, mtv_tclvl :: TcLevel }

| RuntimeUnk

data MetaDetails = Flexi | Indirect TcType

data MetaInfo

= TauTv

| TyVarTv

| RuntimeUnkTv

| CycleBreakerTv

| ConcreteTv ConcreteTvOrigin





f2 = \t. case t of { MkT x -> x }  -- Ill-typed

𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case

∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘 𝒂) ⇒
{ 𝛾 ~ 𝑎 } From result of foo

Generate 
constraints

MkT :: a. Show a => a -> T

• Can we solve by 
substituting 𝛾 ≔ 𝑎?



𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case

∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘 𝒂) ⇒
{ 𝛾 ~ 𝑎 } From result of foo

Generate 
constraints

MkT :: a. Show a => a -> T

Can we solve by 
substituting 𝛾 ≔ 𝑎?

No! No! Noooo!  𝛾 comes 
from an “outer scope”

f2 = \t. case t of { MkT x -> x }  -- Ill-typed



𝛼1 ~ 𝛽1 → 𝛾1 From the lambda
𝛽1 ~ 𝑇 From the case

∀𝒂𝟐. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘 𝒂) ⇒
{ 𝛾1 ~ 𝑎2 } From result of foo

Generate 
constraints

• Every TcTyVar type variable has 
a level number

• Unification variables like ′𝛼’

• Skolems like ‘a’

• Cannot unify outer 𝛾1 with a type 
whose free vars include inner 𝑎2

f2 = \t. case t of { MkT x -> x }  -- Ill-typed



module GHC.Types.Var where

data Var

= TyVar { varName :: !Name

, realUnique :: {-# UNPACK #-} !Int

, varType :: Kind }

| TcTyVar { varName :: !Name,

, realUnique :: {-# UNPACK #-} !Int,

, varType :: Kind,

, tc_tv_details :: TcTyVarDetails }

| Id { ... }

 Both SkolemTv and 
MetaTv has a level number

module GHC.Tc.Utils.TcType where

type TcType = Type -- May have TcTyVars

data TcTyVarDetails

= SkolemTv SkolemInfo TcLevel Bool

| MetaTv { mtv_info :: MetaInfo

, mtv_ref :: IORef MetaDetails

, mtv_tclvl :: TcLevel }

| RuntimeUnk

data MetaDetails = Flexi | Indirect TcType

data MetaInfo

= TauTv

| TyVarTv

| RuntimeUnkTv

| CycleBreakerTv

| ConcreteTv ConcreteTvOrigin

newtype TcLevel = TcLevel Int



f = \t. case t of

MkT x -> show x

Generate 
constraints

𝛼1 ~ 𝛽1 → 𝛾1

𝛽1 ~ 𝑇

∀𝒂𝟐. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘 𝒂) ⇒
{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝛿2

, 𝛿2 ~ 𝑎2

, 𝛾1 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 }

∀𝒂𝟐. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘 𝒂) ⇒
{ 𝛾1 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 }

𝛼 ≔ 𝑇 → 𝛾1

𝛽 ≔ 𝑇
𝛿 ≔ 𝑎 This is fine; no free 

inner variables



 Can we unify 𝛼1 ≔ (𝛽2 → 𝐼𝑛𝑡)?

 No, it has a free inner variable 𝛽2

 But we can promote 𝛽, thus 𝛽2 ≔ 𝛾1, where 𝛾1 is fresh

 Now we can unify 𝛼1 ≔ (𝛾1 → 𝐼𝑛𝑡)

∀𝑎2. 𝛼1~ (𝛽2→ Int), …



data G a where

GInt :: Bool -> G Char

MkG :: a -> G a

f x = case x of

GInt v -> ‘x’

MkG v  -> v

∀. (𝑔: 𝛼1~𝐶ℎ𝑎𝑟) ⇒ { 𝛽1~ 𝐶ℎ𝑎𝑟} from GInt branch

𝛽1~ 𝛼1 from MkG branch

GInt :: a. (a~Char) => Bool -> G a

f : 𝐺 𝛼1 → 𝛽1

x : 𝐺 𝛼1



data G a where

GInt :: Bool -> G Char

MkG :: a -> G a

f x = case x of

GInt v -> ‘x’

MkG v  -> v

∀. (𝑔: 𝛼1~𝐶ℎ𝑎𝑟) ⇒ { 𝛽1~ 𝐶ℎ𝑎𝑟} from GInt branch

𝛽1~ 𝛼1 from MkG branch

Must not solve by 𝛽1 ≔ 𝐶ℎ𝑎𝑟!

𝛽1 is “untouchable” under the 
equality 𝛼1~ 𝐶ℎ𝑎𝑟



 When generating constraints for a term, the generator has 
an “ambient” level

 Fresh unification variables are born at this level

 At a pattern match e.g.   case x of { K x y -> rhs }
 Increment the ambient level
 Generate constraints for the rhs
 Wrap them in an implication constraint binding the existentials and 

constraints of K
 No need for this wrapping if no existentials or constraints

e.g.   case x of { Just y -> rhs;  … }



f :: a. Ord a => [a] -> [a]

f = \xs -> reverse (sort xs)

∀𝟏𝒂. (𝒈𝒅 ∶ 𝑶𝒓𝒅 𝒂) ⇒
{ 𝑑 ∶ 𝑂𝑟𝑑 𝛽1 From call of sort
, 𝛽1 ~ [𝛼1] Result of sort
, 𝛼1 ~ 𝑎 } From result of foo

• xs : [𝑎]
• Instantiate reverse with 𝛼
• Instantiate sort with 𝛽

reverse :: a. [a] -> [a] 

sort    :: a. Ord a => [a] -> [a]

• Type signature gives rise to 
an implication constraint

• Constraints of the 
signature become “givens” 
of the implication

• Increment the ambient 
level before generating 
constraints for the RHS



op :: C a x => a -> x -> Int

instance Eq a => C a Bool

f x = let g :: a Eq a => a -> a

g a = op a x

in g (not x)

x : 
Constraint: C a 

∀2𝑎. 𝐸𝑞 𝑎 ⇒ 𝐶 𝑎 𝛽1

𝛽1~ 𝐵𝑜𝑜𝑙
Solve this first

And then this





 Given constraint
 We have evidence for it

 Use it to prove Wanteds

 Wanted constraint
 We want to produce evidence for it



data Ct = CDictCan DictCt

| CEqCan EqCt

| CIrredCan IrredCt

| CQuantCan QCInst

| CNonCanonical CtEvidence

data DictCt   -- e.g.  Num ty

= DictCt { di_ev  :: CtEvidence

, di_cls :: Class

, di_tys :: [Xi]

, di_pend_sc :: ExpansionFuel }

data EqCt = EqCt { eq_ev     :: CtEvidence

, eq_lhs    :: CanEqLHS

, eq_rhs    :: Type

, eq_eq_rel :: EqRel }

data CtEvidence

= CtGiven -- Truly given, not depending on subgoals

{ ctev_pred :: TcPredType -- See Note [Ct/evidence invariant]

, ctev_evar :: EvVar -- See Note [CtEvidence invariants]

, ctev_loc :: CtLoc }

| CtWanted -- Wanted goal

{ ctev_pred :: TcPredType -- See Note [Ct/evidence invariant]

, ctev_dest :: TcEvDest -- See Note [CtEvidence invariants]

, ctev_loc :: CtLoc

, ctev_rewriters :: RewriterSet }  -- See Note [Wanteds rewrite Wanteds]

data TcEvDest

= EvVarDest EvVar

| HoleDest CoercionHole





Solve

Haskell 
source 

program

Large 
syntax, with 
many many 

constructors

Constraints

Small syntax, 
with few 

constructors

Constraint 
generation

Residual constraint

Elaborated 
program 

with “holes”

Report
errors

Elaborated 
source 

program

Substitution

Apply
substitution

The essence of ML type inference, Pottier & Remy,
In ATAPL, Pierce, 2005.



 Coercions: the evidence for equality

 Type families, and “flattening”

 Functional dependencies, injectivity

 Deferred type errors and typed holes

 Unboxed vs boxed equalities

 Nominal vs representational equality (Coercible etc)

 Kind polymorphism, levity polymorphism, matchabilty polymorphism

 … and quite a bit more



 Coercions: the evidence for equality

 Type families, and “flattening”

 Functional dependencies, injectivity, and “Derived” 
constraints

 Deferred type errors and typed holes

 Unboxed vs boxed equalities

 Nominal vs representational equality (Coercible etc)

 … and quite a bit more



 Generate constraints then solve, is THE way to do type 
inference.

 Background reading
 OutsideIn(X): modular type inference with local assumptions (JFP 

2011).   Covers implication constraints but not floating or level 
numbers.

 Practical type inference for arbitrary-rank types (JFP 2007).  Full 
executable code; but does not use the Glorious French Approach

Vive la France



There is lots more to say. 

Far too much to fit in a 1-hr talk. 

Some of these extra topics are in the following slides.





data T a where

K1 :: Bool -> T Bool

K2 :: T a

f :: T a -> Maybe a

f x = case x of 

K1 z -> Just z

K2   -> Nothing

K1 :: a. (a~Bool) => 

Bool -> T a



f :: T a -> Maybe a

f = (a:*) (x:T a).

case x of 

K1 (c:a~Bool) (z:Bool)

-> Just z  c2

K2 -> False Plus 
constraint 
to solve

K1 :: a. (a~Bool) => 

Bool -> T a

∀. c ∶ a~Bool ⇒ (𝑐2 ∶ 𝑀𝑎𝑦𝑏𝑒 𝐵𝑜𝑜𝑙 ~ 𝑀𝑎𝑦𝑏𝑒 𝑎)



c2 := Maybe c3

c3 := c4 ; Sym c

∀2. 𝑐 ∶ 𝑎~𝐵𝑜𝑜𝑙 ⇒ 𝜖

c4 := Refl Bool

Decompose

Use given to substitute for a

∀2. 𝑐 ∶ 𝑎~𝐵𝑜𝑜𝑙 ⇒ (𝑐3 ∶ 𝐵𝑜𝑜𝑙 ~ 𝐵𝑜𝑜𝑙)

∀2. 𝑐 ∶ 𝑎~𝐵𝑜𝑜𝑙 ⇒ (𝑐3 ∶ 𝐵𝑜𝑜𝑙 ~ 𝑎)

∀2. 𝑐 ∶ 𝑎~𝐵𝑜𝑜𝑙 ⇒ (𝑐2 ∶ 𝑀𝑎𝑦𝑏𝑒 𝐵𝑜𝑜𝑙 ~ 𝑀𝑎𝑦𝑏𝑒 𝑎)

Use given to substitute for a

Proving Bool~Bool is easy



f :: T a -> Maybe a

f = (a:*) (x:T a)

case x of 

K1 (c:a~Bool) (z:Bool)

-> Just z  (Maybe (Refl Bool ; Sym c))

K2 -> False



data T a where

K :: Bool -> T Bool

f x = case x of 

K z -> True

What type should we infer for f?

 f :: b. T b -> b

 f :: b. T b -> Bool

Neither is more general than 
(a substitution instance of)
the other!



data T a where

T1 :: Bool -> T Bool

f x = case x of 

T1 z -> True

f : 𝛼 → 𝛾
x : 𝛼

𝛼1~ 𝑇 𝛽1

∀2. 𝛽1~𝐵𝑜𝑜𝑙 ⇒ 𝛾1~ 𝐵𝑜𝑜𝑙

• Float, and solve?
𝛾1 ≔ 𝐵𝑜𝑜𝑙

Get  f :: b. T b -> Bool

• Rewrite 𝛾1~𝐵𝑜𝑜𝑙 to 
𝛾1~ 𝛽1 using the given 
𝛽1 ~ 𝐵𝑜𝑜𝑙; then float and 
solve 𝛾1 ≔ 𝛽1

Get b. T b -> b



data T a where

T1 :: Bool -> T Bool

f x = case x of 

T1 z -> True

f : 𝛼 → 𝛾
x : 𝛼

𝛼1~ 𝑇 𝛽1

∀2. 𝛽1~𝐵𝑜𝑜𝑙 ⇒ 𝛾1~ 𝐵𝑜𝑜𝑙
Result (in this case):
“cannot unify untouchable 𝛾
with Bool”

Solution

Do not float anything 
out of an implication 

that has “given” 
equalities



data T a where

K1 :: Bool -> T Bool

K2 :: T a

f2 x = case x of 

K1 z -> True

K2   -> False

f : 𝛼 → 𝛾
x : 𝛼

𝛼1~ 𝑇 𝛽1

∀2. 𝛽1~𝐵𝑜𝑜𝑙 ⇒ 𝛾1~ 𝐵𝑜𝑜𝑙
𝛾1~ 𝐵𝑜𝑜𝑙

From the K2 branch, 
no implication needed

Another branch, with 
no given equalities, 
may resolve the 
ambiguity





 The rise of dynamic languages

 “The type errors are getting in my way”

 Feedback to programmer
 Static: type system

 Dynamic: run tests

“Programmer is denied dynamic feedback in the periods when the 
program is not globally type correct” [DuctileJ, ICSE’11]



 Underlying problem: forces programmer to fix all type errors 
before running any code. 

Goal: Damn the torpedos

Compile even type-incorrect 
programs to executable code, 
without losing type soundness



 Not just the command line: can load modules with 
type errors --- and run them

 Type errors occur at run-time if (and only if) they 
are actually encountered

bash$ ghci –fdefer-type-errors

ghci> let foo = (True, ‘a’ && False)

Warning: can’t match Char with Bool

gici> fst foo

True

ghci> snd foo

Error: can’t match Char with Bool



 Quick, what type does the “_” have?

 Agda does this, via Emacs IDE

{-# LANGUAGE TypeHoles #-}

module Holes where

f x = (reverse . _) x

Holes.hs:2:18:

Found hole ‘_’ with type: a -> [a1]

Relevant bindings include

f :: a -> [a1] (bound at Holes.hs:2:1)

x :: a (bound at Holes.hs:2:3)

In the second argument of (.), namely ‘_’   

In the expression: reverse . _

In the expression: (reverse . _) x



f x = [_a, x::[Char], _b:_c ]

Holes:2:12:

Found hole `_a' with type: [Char]

In the expression: _a

In the expression: [_a, x :: [Char], _b : _c]

In an equation for `f': f x = [_a, x :: [Char], _b : _c]

Holes:2:27:

Found hole `_b' with type: Char

In the first argument of `(:)', namely `_b'

In the expression: _b : _c

In the expression: [_a, x :: [Char], _b : _c]

Holes:2:30:

Found hole `_c' with type: [Char]

In the second argument of `(:)', namely `_c'

In the expression: _b : _c

In the expression: [_a, x :: [Char], _b : _c]



 -XTypeHoles and –fdefer-type-errors work together

 With both, 
 you get warnings for holes, 

 but you can still run the program

 If you evaluate a hole you get a runtime error.



 Presumably, we generate a program with suitable run-time 
checks.

 How can we be sure that the run-time checks are in the right 
place, and stay in the right places after optimisation?

 Answer: not a hack at all, but a thing of beauty!

 Zero runtime cost



(True, ‘a’ && False)

(True, (‘a’  c7) && False)c7 : Int ~ Bool

Haskell term

Constraints Elaborated program
(mentioning constraint variables)



let c7: Int~Bool
= error “Can’t match ...”

(True, (‘a’  c7) && False)c7 : Int ~ Bool

Constraints Elaborated program
(mentioning constraint variables)

Solve

 Use lazily evaluated “error” evidence

 Cast evaluates its evidence

 Error triggered when (and only when) ‘a’ 
must have type Bool



let c7: Int~Bool
= error “Can’t match ...”

(True, (‘a’  c7) && False)c7 : Int ~ Bool

Constraints Elaborated program
(mentioning constraint variables)

Solve

 Use lazily evaluated “error” evidence

 Cast evaluates its evidence

 Error triggered when (and only when) ‘a’ 
must have type Bool

Uh oh!  What 
became of coercion 

erasure?



True && _

(True && h7)h7 : Hole 
 ~ Bool

Haskell term

Constraints
Elaborated program
(mentioning constraint variables)



(True && h7)h7 : Hole Bool

Constraints
Elaborated program
(mentioning constraint variables)

let h7: Bool
= error “Evaluated hole”Solve

 Again use lazily evaluated “error” evidence

 Error triggered when (and only when) the 
hole is evaluated





 We need to infer the most general type for
g :: a. Num a => a -> a

so that it can be called at Int and Float

 Generate constraints for g’s RHS, simplify 
them, quantify over variables not free in the 
environment

 BUT: what happened to “generate then solve”?

f :: Int -> Float -> (Int,Float)

f x y = let g v = v+v

in (g x, g y)



data T a where

C :: T Bool

D :: a -> T a

f :: T a -> a -> Bool

f v x = case v of

C -> let y = not x 

in y

D x -> True

Should this 
typecheck?

In the C 
alternative, we 

know a~Bool



data T a where

C :: T Bool

D :: a -> T a

f :: T a -> a -> Bool

f v x = let y = not x

in case v of

C -> y

D x -> True

What about 
this?

Constraint a~Bool
arises from  
match on C



data T a where

C :: T Bool

D :: a -> T a

f :: T a -> a -> Bool

f v x = let y () = not x

in case v of

C -> y ()

D x -> True

Or this?



data T a where

C :: T Bool

D :: a -> T a

f :: T a -> a -> Bool

f v x = let y :: (a~Bool) => () -> Bool 

y () = not x

in case v of

C -> y ()

D x -> True

But this 
surely 
should!

Here we 
abstract over 

the a~Bool
constraint



Abstract over all unsolved constraints from RHS

 Big types, unexpected to programmer

 Errors postponed to usage sites

 (Serious) Sharing loss for thunks

 (Killer) Can’t abstract over implications
f :: (forall a. (a~[b]) => b~Int) => blah



Do not generalise local let-bindings at all!

 Simple, straightforward, efficient

 Polymorphism is almost never used in local bindings (see 
“Modular type inference with local constraints”, JFP)

 GHC actually generalises local bindings that could have been 
top-level, so there is no penalty for localising a definition.





 Is this all this coercion faff efficient?

 ML typechecking has zero runtime cost; so anything involving 
these casts and coercions looks inefficient, doesn’t it?



 Remember deferred type errors: cast must 
evaluate its coercion argument.  

 What became of erasure?

let c7: Bool~Bool = refl Bool
in (x  c7) && False)



 Expose evaluation to optimiser

data Int = I#  Int#

plusInt :: Int -> Int -> Int
plusInt x y 
= case x of I# a ->

case y of I# b ->
I#  (a +# b)

x `plusInt` x

= case x of I# a ->
case x of I# b ->
I#  (a +# b)

= case x of I# a ->
I#  (a +# a)

Library code Inline + optimise



 So (~#) is the primitive type constructor

 (#) is the primitive language construct

 And (#) is erasable

data a ~ b = Eq#  (a ~# b)

() :: (a~b) -> a -> b
x  c = case c of

Eq# d -> x # d

refl :: t~t
refl = /\t. Eq# (refl# t)

Library code
Inline + optimise

let c7 = refl Bool
in (x  c7) && False

...inline refl, 
=  (x # (refl# Bool))

&& False



A T1 value allocated in the heap looks like this 

Question: what is the 
representation for (a~#Bool)?

data T where

T1 :: a. (a~#Bool) -> Double# -> Bool -> T a

T1 3.8

64 bits 32 bits

???

True



A T1 value allocated in the heap looks like this 

Question: what is the 
representation for (a~#Bool)?

Answer: a 0-bit value

data T where

T1 :: a. (a~#Bool) -> Double# -> Bool -> T a

T1 3.8

64 bits 32 bits

True

0 bits



 User API and type inference deal exclusively in 
boxed equality (a~b)

 Hence all evidence (equalities, type classes, implicit 
parameters...) is uniformly boxed

 Ordinary, already-implemented optimisation unwrap 
almost all boxed equalities.

 Unboxed equality (a~#b) is represented by 0-bit 
values.  Casts are erased.

 Possibility of residual computations to check 
termination

data a ~ b = Eq#  (a ~# b)


